Robustness
Formal
In computer science, robustness is the ability of a computer system to cope with errors during execution. Robustness can also be defined as the ability of an algorithm to continue operating despite abnormalities in input, calculations, etc.
Practical
In computer science, robustness is the ability of a computer system to cope with errors during execution. Robustness can also be defined as the ability of an algorithm to continue operating despite abnormalities in input, calculations, etc. Robustness can encompass many areas of computer science, such as robust programming, robust machine learning, and Robust Security Network. Formal techniques, such as fuzz testing, are essential to showing robustness since this type of testing involves invalid or unexpected inputs. Alternatively, fault injection can be used to test robustness. Various commercial products perform robustness testing of software systems, and is a process of failure assessment analysis. In general, building robust systems that encompass every point of possible failure is difficult because of the vast amount of possible inputs and input combinations. Since all inputs and input combinations would require too much time to test, developers cannot run through all cases exhaustively. Instead, the developer will try to generalize such cases. For example, imagine inputting in some integer values. Some selected inputs might consist of a negative number, zero, and a positive number. When using these numbers to test software in this way, the developer generalizes the set of all reals into three numbers. This is a more efficient and manageable method, but more prone to failure. Generalizing test cases is an example of just one technique to deal with failure - specifically, failure due to invalid user input. Systems generally may also fail due to other reasons as well, such as disconnecting from a network.