Customer Company Size
Mid-size Company
Region
- Europe
Country
- France
Product
- Dataiku
- Kubernetes
- AWS EKS
Tech Stack
- Python
- R
- Spark
Implementation Scale
- Enterprise-wide Deployment
Impact Metrics
- Cost Savings
- Digital Expertise
- Productivity Improvements
Technology Category
- Infrastructure as a Service (IaaS) - Cloud Computing
- Platform as a Service (PaaS) - Data Management Platforms
Applicable Industries
- Transportation
Applicable Functions
- Business Operation
Use Cases
- Fleet Management
- Predictive Maintenance
- Supply Chain Visibility
Services
- Cloud Planning, Design & Implementation Services
- Data Science Services
About The Customer
Heetch is a French company founded in 2013 with the goal of making mobility more accessible by offering a smooth user experience. The company has grown quickly to 250 employees and has gathered troves of data from drivers, passengers, global operations, and more since its launch. However, as the amount of data grew, the company struggled to scale their ability to leverage that data. Five years in, data warehouse costs were spiraling out of control, and performance was suffering. The company needed to find a solution that would allow anyone across the organization to work with large amounts of data while also ensuring optimized resource allocation.
The Challenge
Heetch, a French company founded in 2013, has grown quickly to 250 employees united around one goal: making mobility more accessible by offering a smooth user experience. The company has gathered troves of data from drivers, passengers, global operations, and more since its launch, yet they struggled to scale their ability to actually leverage that data. Five years in, data warehouse costs were spiraling out of control, and performance was suffering as the amount of data grew. The company needed to find a solution that would allow anyone across the organization to work with large amounts of data while also ensuring optimized resource allocation.
The Solution
In 2019, Heetch chose Dataiku as their single platform for building data pipelines and processing raw data, paired with Looker for the seamless visualization and exploration of those flows. In addition to serving as a platform where Heetch could centralize knowledge and best practices, the team also leveraged Dataiku and Kubernetes to address their primary paint point: leveraging data while maintaining good performance and reasonable costs. Thanks to Dataiku’s native integration with major cloud vendors’ managed Kubernetes services, Heetch was able to integrate their AWS EKS cluster very quickly and saw a drastic increase in value from their data. Teams can now easily offload resource-intensive workloads, like big Python and R jobs, as well as leverage the EKS cluster to distribute compute and run Spark jobs. Using Dataiku means this functionality is available and accessible to any Heetch employee, no matter his or her knowledge in distributed computing — Dataiku abstracts away the complexity.
Operational Impact
Quantitative Benefit
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.
Related Case Studies.
Case Study
Airport SCADA Systems Improve Service Levels
Modern airports are one of the busiest environments on Earth and rely on process automation equipment to ensure service operators achieve their KPIs. Increasingly airport SCADA systems are being used to control all aspects of the operation and associated facilities. This is because unplanned system downtime can cost dearly, both in terms of reduced revenues and the associated loss of customer satisfaction due to inevitable travel inconvenience and disruption.
Case Study
IoT-based Fleet Intelligence Innovation
Speed to market is precious for DRVR, a rapidly growing start-up company. With a business model dependent on reliable mobile data, managers were spending their lives trying to negotiate data roaming deals with mobile network operators in different countries. And, even then, service quality was a constant concern.
Case Study
Digitize Railway with Deutsche Bahn
To reduce maintenance costs and delay-causing failures for Deutsche Bahn. They need manual measurements by a position measurement system based on custom-made MEMS sensor clusters, which allow autonomous and continuous monitoring with wireless data transmission and long battery. They were looking for data pre-processing solution in the sensor and machine learning algorithms in the cloud so as to detect critical wear.
Case Study
Cold Chain Transportation and Refrigerated Fleet Management System
1) Create a digital connected transportation solution to retrofit cold chain trailers with real-time tracking and controls. 2) Prevent multi-million dollar losses due to theft or spoilage. 3) Deliver a digital chain-of-custody solution for door to door load monitoring and security. 4) Provide a trusted multi-fleet solution in a single application with granular data and access controls.
Case Study
Vehicle Fleet Analytics
Organizations frequently implement a maintenance strategy for their fleets of vehicles using a combination of time and usage based maintenance schedules. While effective as a whole, time and usage based schedules do not take into account driving patterns, environmental factors, and sensors currently deployed within the vehicle measuring crank voltage, ignition voltage, and acceleration, all of which have a significant influence on the overall health of the vehicle.In a typical fleet, a large percentage of road calls are related to electrical failure, with battery failure being a common cause. Battery failures result in unmet service agreement levels and costly re-adjustment of scheduled to provide replacement vehicles. To reduce the impact of unplanned maintenance, the transportation logistics company was interested in a trial of C3 Vehicle Fleet Analytics.
Case Study
3M Gains Real-Time Insight with Cloud Solution
The company has a long track record of innovative technology solutions. For example, 3M helps its customers optimize parking operations by automating fee collection and other processes. To improve support for this rapidly expanding segment, 3M needed to automate its own data collection and reporting. The company had recently purchased the assets of parking, tolling, and automatic license plate reader businesses, and required better insight into these acquisitions. Chad Reed, Global Business Manager for 3M Parking Systems, says, “With thousands of installations across the world, we couldn’t keep track of our software and hardware deployments, which made it difficult to understand our market penetration.” 3M wanted a tracking application that sales staff could use to get real-time information about the type and location of 3M products in parking lots and garages. So that it could be used on-site with potential customers, the solution would have to provide access to data anytime, anywhere, and from an array of mobile devices. Jason Fox, Mobile Application Architect at 3M, upped the ante by volunteering to deliver the new app in one weekend. For Fox and his team, these requirements meant turning to the cloud instead of an on-premises datacenter. “My first thought was to go directly to the cloud because we needed to provide access not only to our salespeople, but to resellers who didn’t have access to our internal network,” says Fox. “The cloud just seemed like a logical choice.”